A fence 6 feet tall runs parallel to a tall building at a distance of 3 ft from the building as shown in the diagram.
[Graphs generated by this script: initPicture(-10,110,-10);line([0,-1],[100,-1]);stroke="red";fill="red";rect([80,0],[100,100]);stroke="blue";strokewidth=2;line([60,0],[60,53]);stroke="lightgreen";strokewidth=5;line([0,0],[80,70]);stroke="black";strokewidth=1;line([61,6],[80,6]);line([63,8],[61,6]);line([63,4],[61,6]);line([77,8],[79,6]);line([77,4],[79,6]);line([1,6],[79,74]);line([2,10],[1,6]);line([4,6],[1,6]);line([76,74],[79,74]);line([78,70],[79,74]);line([58,0],[58,50]);line([58,0],[60,2]);line([58,0],[56,2]);line([58,50],[60,48]);line([58,50],[56,48]);line([8,3],[12,3]);text([35,50],"LADDER");text([70,11],"3 ft");text([50,22],"6 ft");text([10,3],"O")]

We wish to find the length of the shortest ladder that will reach from the ground over the fence to the wall of the building.

[A] First, find a formula for the length of the ladder in terms of θ\displaystyle \theta. (Hint: split the ladder into 2 parts.)
Type theta for θ\displaystyle \theta.

L(θ)=\displaystyle {L}{\left(\theta\right)}=  

[B] Now, find the derivative, L(θ)\displaystyle {L}'{\left(\theta\right)}.
Type theta for θ\displaystyle \theta.

L(θ)=\displaystyle {L}'{\left(\theta\right)}=  

[C] Once you find the value of θ\displaystyle \theta that makes L(θ)=0\displaystyle {L}'{\left(\theta\right)}={0}, substitute that into your original function to find the length of the shortest ladder. (Give your answer accurate to 5 decimal places.)

L(θmin)\displaystyle {L}{\left(\theta_{{\min}}\right)}\approx feet