Suppose that the universal set U\displaystyle {U} is the set defined as U={\displaystyle {U}={\lbrace}whole numbers \displaystyle {\mid} the numbers greater than 5 and less than 15}\displaystyle {\rbrace}.

Write the sets A\displaystyle {A} and B\displaystyle {B} out in roster notation.

C={\displaystyle {C}={\lbrace}a number in U \displaystyle {\mid} the number is an odd number }={\displaystyle {\rbrace}={\lbrace} }\displaystyle {\rbrace}

D={\displaystyle {D}={\lbrace}a number in U \displaystyle {\mid} the number is a composite number }={\displaystyle {\rbrace}={\lbrace} }\displaystyle {\rbrace}



Find each of the following:

n(C)=\displaystyle {n}{\left({C}\right)}=

n(D)=\displaystyle {n}{\left({D}\right)}=