Use variation of parameters to find a particular solution, given the solutions y1,y2\displaystyle {y}_{{1}},{y}_{{2}} of the complementary equation

sin(x)y+(2sin(x)cos(x))y+(sin(x)cos(x))y=ex\displaystyle {\sin{{\left({x}\right)}}}{y}{''}+{\left({2}{\sin{{\left({x}\right)}}}-{\cos{{\left({x}\right)}}}\right)}{y}'+{\left({\sin{{\left({x}\right)}}}-{\cos{{\left({x}\right)}}}\right)}{y}={e}^{{-{x}}}

y1=ex,y2=excos(x)\displaystyle {y}_{{1}}={e}^{{-{x}}},\quad{y}_{{2}}={e}^{{-{x}}}{\cos{{\left({x}\right)}}}

yp(x)=\displaystyle {y}_{{p}}{\left({x}\right)}=