Use variation of parameters to solve the initial value problem, given the solutions y1,y2\displaystyle {y}_{{1}},{y}_{{2}} of the complementary equation

(x1)2y2(x1)y+2y=(x1)2,y(0)=3,y(0)=6\displaystyle {\left({x}-{1}\right)}^{{2}}{y}{''}-{2}{\left({x}-{1}\right)}{y}'+{2}{y}={\left({x}-{1}\right)}^{{2}},{y}{\left({0}\right)}={3},\quad{y}'{\left({0}\right)}=-{6}

y1=x1,y2=x21\displaystyle {y}_{{1}}={x}-{1},\quad{y}_{{2}}={x}^{{2}}-{1}

y(x)=\displaystyle {y}{\left({x}\right)}=