You are given the following data, where X1\displaystyle {X}_{{1}} (final percentage in math class) and X2\displaystyle {X}_{{2}} (number of absences) are used to predict Y\displaystyle {Y} (standardized math test score in fourth grade):

X1\displaystyle {X}_{{1}}X2\displaystyle {X}_{{2}}Y\displaystyle {Y}
615310
783350
802420
926375
820400
801390
952415
657300
883375
990485
922465
891450
703345

Determine the following multiple regression values.

Report intercept and slopes for regression equation accurate to at least 2 decimal places:
    Intercept:  b0=\displaystyle {b}_{{0}}=
    Partial slope X1\displaystyle {X}_{{1}}b1=\displaystyle {b}_{{1}}=
    Partial slope X2\displaystyle {X}_{{2}}b2=\displaystyle {b}_{{2}}=


Report the coefficient of multiple determination for the model (NOT the adjusted R2\displaystyle {R}^{{2}}) and the sum of squares total accurate to at least 2 decimal places:
    R2=\displaystyle {R}^{{2}}=
    SSTotal=\displaystyle {S}{S}_{{\text{Total}}}=

Test the significance of the overall regression model. 
    F-test statistic =
    P-value =

Report the Mean Squares residuals accurate to 2 decimal places:
   

Report the test statistics for the regression coefficients accurate to 2 decimal places:
    The test statistics for b1\displaystyle {b}_{{1}}, t=\displaystyle {t}=
    The test statistics for b2\displaystyle {b}_{{2}}, t=\displaystyle {t}=