Find the general solution of the Euler equation on (0,∞)\displaystyle {\left({0},\infty\right)}(0,∞)
x2y′′−xy′+y=0\displaystyle {x}^{{2}}{y}{''}-{x}{y}'+{y}={0}x2y′′−xy′+y=0
Note: Use b\displaystyle {b}b and d\displaystyle {d}d for constants c1\displaystyle {c}_{{1}}c1 and c2\displaystyle {c}_{{2}}c2
Submit Try a similar question