If α\displaystyle \alpha is a Quadrant IV\displaystyle {I}{V}  angle with cos(α)=1616\displaystyle {\cos{{\left(\alpha\right)}}}={\frac{{\sqrt{{{16}}}}}{{{16}}}} , and  sin(β)=44\displaystyle {\sin{{\left(\beta\right)}}}={\frac{{\sqrt{{{4}}}}}{{{4}}}} , where π2<β<π\displaystyle {\frac{{\pi}}{{{2}}}}<\beta<\pi , find

(a) sin(α+β)\displaystyle {\sin{{\left(\alpha+\beta\right)}}}   

(b) cos(αβ)\displaystyle {\cos{{\left(\alpha-\beta\right)}}}