Let f(x)=x\displaystyle {f{{\left({x}\right)}}}=\sqrt{{{x}}}.

Using the definition of derivative at a point, f(a)=limxa f(x)f(a)xa\displaystyle {f}'{\left({a}\right)}=\lim_{{{x}\rightarrow{a}}}\ {\frac{{{f{{\left({x}\right)}}}-{f{{\left({a}\right)}}}}}{{{x}-{a}}}},
enter the expression needed to find the derivative at x=2\displaystyle {x}={2}.

f(2)=limx2 \displaystyle {f}'{\left({2}\right)}=\lim_{{{x}\rightarrow{2}}}\  

After evaluating this limit, we see that f(2)=\displaystyle {f}'{\left({2}\right)}=  

Finally, the equation of the tangent line to f(x)\displaystyle {f{{\left({x}\right)}}} where x=2\displaystyle {x}={2} is