Calculating the Standard Error Table
The standard error, which is an average of how far sample means are from the population mean, is defined by σx=σn\displaystyle \sigma_{\overline{{{x}}}}=\frac{σ}{\sqrt{{{n}}}} where σ\displaystyle \sigma is the standard deviation and n\displaystyle {n} is the sample size. Calculate the following standard errors with the given σ\displaystyle \sigma and n\displaystyle {n} values. Round your answers to 2 decimal places.
σ\displaystyle \sigma n\displaystyle {n} σx=σn\displaystyle \sigma_{\overline{{{x}}}}=\frac{σ}{\sqrt{{{n}}}}
13.4\displaystyle {13.4}  23\displaystyle {23}  13.423=\displaystyle \frac{{13.4}}{\sqrt{{{23}}}}= 
15.36\displaystyle {15.36} 30\displaystyle {30} 15.3630=\displaystyle \frac{{15.36}}{\sqrt{{{30}}}}= 
14.41\displaystyle {14.41} 5\displaystyle {5} 14.415=\displaystyle \frac{{14.41}}{\sqrt{{{5}}}}= 
14.82\displaystyle {14.82} 6\displaystyle {6} 14.826=\displaystyle \frac{{14.82}}{\sqrt{{{6}}}}= 
14.24\displaystyle {14.24} 44\displaystyle {44} 14.2444=\displaystyle \frac{{14.24}}{\sqrt{{{44}}}}=