Suppose the function g\displaystyle {g} statisfies

16x2x224<g(x)<x28x+24\displaystyle {16}{x}-{2}{x}^{{2}}-{24}<{g{{\left({x}\right)}}}<{x}^{{2}}-{8}{x}+{24}.

We want to use the Squeeze Theorem to evaluate limx4g(x)\displaystyle \lim_{{{x}\rightarrow{4}}}{g{{\left({x}\right)}}}.

First evaluate: limx416x2x224\displaystyle \lim_{{{x}\rightarrow{4}}}{16}{x}-{2}{x}^{{2}}-{24}
 

Next evaluate: limx4x28x+24\displaystyle \lim_{{{x}\rightarrow{4}}}{x}^{{2}}-{8}{x}+{24}
 

Therefore, by the Squeeze Theorem, limx4g(x)\displaystyle \lim_{{{x}\rightarrow{4}}}{g{{\left({x}\right)}}} =