Let f(x)={6x+3ifx<224x2ifx>2\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} \frac{{6}}{{{x}+{3}}}&\text{if}&{x}<-{2}\\-\frac{{24}}{{{x}-{2}}}&\text{if}&{x}>-{2}\end{array}\right.}

Compute the quantities below. Write "DNE" if the limit does not exist or the value is undefined.

limx2f(x)=\displaystyle \lim_{{{x}\to-{2}^{{-}}}}{f{{\left({x}\right)}}}=  

limx2+f(x)=\displaystyle \lim_{{{x}\to-{2}^{+}}}{f{{\left({x}\right)}}}=  

f(2)=\displaystyle {f{{\left(-{2}\right)}}}=  

Since the above three quantities are , we know that f\displaystyle {f} is at x=2\displaystyle {x}=-{2}.

List ALL numbers at which f\displaystyle {f} is discontinuous. Be sure to check the functions defined to the left and right of -2 for discontinuities.