Consider the function f(x)=x450x2+2,4x11\displaystyle {f{{\left({x}\right)}}}={x}^{{4}}-{50}{x}^{{2}}+{2},\quad-{4}\leq{x}\leq{11}.

The absolute maximum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is at
x\displaystyle {x} =   ,
and the absolute maximum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is
  .



The absolute minimum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is at
x\displaystyle {x} =   ,
and the absolute minimum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is
  .