For a normal variable X∼N(μ=49.5,σ=1.7)\displaystyle {X}\sim{N}{\left(\mu={49.5},\sigma={1.7}\right)}X∼N(μ=49.5,σ=1.7), find the probability P(52.05<X<52.45)\displaystyle {P}{\left({52.05}<{X}<{52.45}\right)}P(52.05<X<52.45) :
P(52.05<X<52.45)=\displaystyle {P}{\left({52.05}<{X}<{52.45}\right)}=P(52.05<X<52.45)= (Round the answer to 4 decimal places)
Submit Try a similar question