Let YB(n=2,p=0.6)\displaystyle {Y}∼{B}{\left({n}={2},{p}={0.6}\right)}.

  1. Construct the probability distribution table for Y\displaystyle {Y} . 
    k\displaystyle {k}   P(Y=k)=Cknpk(1p)nk\displaystyle {P}{\left({Y}={k}\right)}={{C}_{{k}}^{{n}}}{p}^{{k}}{\left({1}-{p}\right)}^{{{n}-{k}}} 
    0  P(Y=0)=\displaystyle {P}{\left({Y}={0}\right)}=
    1  P(Y=1)=\displaystyle {P}{\left({Y}={1}\right)}=
    2  P(Y=2)=\displaystyle {P}{\left({Y}={2}\right)}=
  2. Use the probability distribution table to find the following:
    1.  P(Y<2)=\displaystyle {P}{\left({Y}\lt-{2}\right)}=
    2.  P(Y3)=\displaystyle {P}{\left({Y}\le{3}\right)}=
    3.  P(Y1)=\displaystyle {P}{\left({Y}\le{1}\right)}=