The function w(t)\displaystyle {w}{\left({t}\right)} is graphed below. Find the value of each of the following integrals based on the graph of w(t)\displaystyle {w}{\left({t}\right)}.

03w(t)dt=\displaystyle {\int_{{0}}^{{3}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

36w(t)dt=\displaystyle {\int_{{3}}^{{6}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

06w(t)dt=\displaystyle {\int_{{0}}^{{6}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

03w(t)dt+36w(t)dt=\displaystyle {\int_{{0}}^{{3}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}+{\int_{{3}}^{{6}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

33w(t)dt=\displaystyle {\int_{{3}}^{{3}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

06w(t)dt33w(t)dt=\displaystyle {\int_{{0}}^{{6}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}-{\int_{{3}}^{{3}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=

63w(t)dt=\displaystyle {\int_{{6}}^{{3}}}{w}{\left({t}\right)}{\left.{d}{t}\right.}=