• where not met in 200 iterations
Let v=(7,16,16)\displaystyle {\mathbf{{v}}}={\left({7},{16},{16}\right)} and w=(23,38,8)\displaystyle {\mathbf{{w}}}={\left({23},{38},{8}\right)} be ordered pairs in R3\displaystyle {\mathbb{{{R}}}}^{{3}}. Find two scalars c1\displaystyle {c}_{{1}} and c2\displaystyle {c}_{{2}} such that
    c1v+c2w=(20,36,16)\displaystyle {c}_{{1}}{\mathbf{{v}}}+{c}_{{2}}{\mathbf{{w}}}={\left({20},{36},{16}\right)}.
Answer Format: exact values or approximation to two decimal places.

c1=\displaystyle {c}_{{1}}=  
c2=\displaystyle {c}_{{2}}=