Simplify the expression and give your answer in the form of f(x)g(x).\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}}.g(x)f(x).
2x2+5x+2x2+3x−4÷x2+4x+42x2−3x+1\displaystyle {\frac{{{2}{x}^{{2}}+{5}{x}+{2}}}{{{x}^{{2}}+{3}{x}-{4}}}}\div{\frac{{{x}^{{2}}+{4}{x}+{4}}}{{{2}{x}^{{2}}-{3}{x}+{1}}}}x2+3x−42x2+5x+2÷2x2−3x+1x2+4x+4 Your answer for the function f(x)\displaystyle {f{{\left({x}\right)}}}f(x) is : Preview Question 6 Part 1 of 2 Your answer for the function g(x)\displaystyle {g{{\left({x}\right)}}}g(x) is : Preview Question 6 Part 2 of 2
Submit Try a similar question