Simplify the expression and give your answer in the form of f(x)g(x).\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}}.g(x)f(x).
x2+5x+6x2+7x+6⋅x2+4x+3x2+8x+12\displaystyle {\frac{{{x}^{{2}}+{5}{x}+{6}}}{{{x}^{{2}}+{7}{x}+{6}}}}\cdot{\frac{{{x}^{{2}}+{4}{x}+{3}}}{{{x}^{{2}}+{8}{x}+{12}}}}x2+7x+6x2+5x+6⋅x2+8x+12x2+4x+3Your answer for the function f(x)\displaystyle {f{{\left({x}\right)}}}f(x) is : Preview Question 6 Part 1 of 2 Your answer for the function g(x)\displaystyle {g{{\left({x}\right)}}}g(x) is : Preview Question 6 Part 2 of 2
Submit Try a similar question