Simplify the expression and give your answer in the form of f(x)g(x).\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}}.


x2+5x+6x2+3x+2x2+6x+5x2+4x+4\displaystyle {\frac{{{x}^{{2}}+{5}{x}+{6}}}{{{x}^{{2}}+{3}{x}+{2}}}}\cdot{\frac{{{x}^{{2}}+{6}{x}+{5}}}{{{x}^{{2}}+{4}{x}+{4}}}}




Your answer for the function f(x)\displaystyle {f{{\left({x}\right)}}} is :  
Your answer for the function g(x)\displaystyle {g{{\left({x}\right)}}} is :