Define a function f:NN\displaystyle {f}:{\mathbb{{N}}}\rightarrow{\mathbb{{N}}} as follows.

f(n)={n2  if  n  is even, and  3n+1  if  n  is odd.\displaystyle {f{{\left({n}\right)}}}={\left\lbrace\begin{array}{c} \frac{{n}}{{2}}\ \text{ if }\ {n}\ \text{ is even, and }\ \\{3}{n}+{1}\ \text{ if }\ {n}\ \text{ is odd.}\end{array}\right.} 

 We can use this function to define a recursive sequence with initial condition c1N\displaystyle {c}_{{1}}\in{\mathbb{{N}}} , and  ck+1=f(ck)\displaystyle {c}_{{{k}+{1}}}={f{{\left({c}_{{k}}\right)}}}.

For example, if c1=5\displaystyle {c}_{{1}}={5}, then (ck)=(5,16,8,4,1,1,4,2,1,)\displaystyle {\left({c}_{{k}}\right)}={\left({5},{16},{8},{4},{1},{1},{4},{2},{1},\ldots\right)}.

Now you try.  Fill in the table below.

k\displaystyle {k}  ck\displaystyle {c}_{{k}} 
1 12
2
3
4
5
6
7
8
9
10

If you were to try lots of different initial conditions, you will probably guess the following.

Conjecture: For any choice of initial c1N\displaystyle {c}_{{1}}\in{\mathbb{{N}}}, the sequence (ck)\displaystyle {\left({c}_{{k}}\right)}  will eventually output 1\displaystyle {1}.

This is called the Collatz conjecture.  Nobody knows if it is true or false, but the statement has been checked for all starting values up to 87×\displaystyle \times260.

For more information, click here.