Consider the function
f ( x ) = − 2 x 3 + 27 x 2 − 48 x + 6 \displaystyle {f{{\left({x}\right)}}}=-{2}{x}^{{3}}+{27}{x}^{{2}}-{48}{x}+{6} f ( x ) = − 2 x 3 + 27 x 2 − 48 x + 6 .
For this function there are three important open intervals:
( − ∞ , A ) \displaystyle {\left(-\infty,{A}\right)} ( − ∞ , A ) ,
( A , B ) \displaystyle {\left({A},{B}\right)} ( A , B ) , and
( B , ∞ ) \displaystyle {\left({B},\infty\right)} ( B , ∞ ) where
A \displaystyle {A} A and
B \displaystyle {B} B are the critical numbers.
Find
A \displaystyle {A} A Preview Question 6 Part 1 of 7
and
B \displaystyle {B} B Preview Question 6 Part 2 of 7
For each of the following open intervals, determine whether
f ( x ) \displaystyle {f{{\left({x}\right)}}} f ( x )
is increasing or decreasing.
( − ∞ , A ) \displaystyle {\left(-\infty,{A}\right)} ( − ∞ , A ) :
Select an answer
increasing
decreasing
( A , B ) \displaystyle {\left({A},{B}\right)} ( A , B ) :
Select an answer
increasing
decreasing
( B , ∞ ) \displaystyle {\left({B},\infty\right)} ( B , ∞ ) :
Select an answer
increasing
decreasing
Using the First Derivative Test, we can conclude:
at
x = A , f ( x ) \displaystyle {x}={A},{f{{\left({x}\right)}}} x = A , f ( x ) has a
Select an answer
local maximum
local minimum
neither a max nor a min
at
x = B , f ( x ) \displaystyle {x}={B},{f{{\left({x}\right)}}} x = B , f ( x ) has a
Select an answer
local maximum
local minimum
neither a max nor a min