Consider the function f(x)=2x3+27x248x+6\displaystyle {f{{\left({x}\right)}}}=-{2}{x}^{{3}}+{27}{x}^{{2}}-{48}{x}+{6}. For this function there are three important open intervals: (,A)\displaystyle {\left(-\infty,{A}\right)}, (A,B)\displaystyle {\left({A},{B}\right)}, and (B,)\displaystyle {\left({B},\infty\right)} where A\displaystyle {A} and B\displaystyle {B} are the critical numbers.
Find A\displaystyle {A}  
and B\displaystyle {B}  

For each of the following open intervals, determine whether f(x)\displaystyle {f{{\left({x}\right)}}} is increasing or decreasing.
(,A)\displaystyle {\left(-\infty,{A}\right)}:
(A,B)\displaystyle {\left({A},{B}\right)}:
(B,)\displaystyle {\left({B},\infty\right)}:

Using the First Derivative Test, we can conclude:

at x=A,f(x)\displaystyle {x}={A},{f{{\left({x}\right)}}} has a
at x=B,f(x)\displaystyle {x}={B},{f{{\left({x}\right)}}} has a