Given ΔABC\displaystyle \Delta{A}{B}{C} is a right triangle with AD\displaystyle \overline{{{A}{D}}} a perpendicular from the right angle to the hypotenuse. Give you answers as fractions of lowest terms. (Note: the picture is not to scale.)

[Graphs generated by this script: initPicture(0,6,0,5);; path([[1,1],[1,4],[5,1],[1,1]]);; path([[1,1],[1.96,3.28]]);; text([1,1],'A','belowleft');; text([1,4],'B','aboveleft');; text([5,1],'C','belowright');; text([1,2.5],'48','left');; text([3,1],'90','below');; text([1.96,3.28],'D','aboveright');]

Find:

(i)    the length of AD=\displaystyle \overline{{{A}{D}}}=

(ii)   the perimeter of ΔADC=\displaystyle \Delta{A}{D}{C}=

(iii)  the area of ΔADB=\displaystyle \Delta{A}{D}{B}=