12345678910-1-2-3-4-5-6-7-8-9-1012345678910-1-2-3-4-5-6-7-8-9-10

For the graph f(x)\displaystyle {f{{\left({x}\right)}}} above, find:

Find:

limx3f(x)=\displaystyle \lim_{{{x}\rightarrow-{3}^{{-}}}}{f{{\left({x}\right)}}}=

limx3+f(x)=\displaystyle \lim_{{{x}\rightarrow-{3}^{+}}}{f{{\left({x}\right)}}}=

limx3f(x)=\displaystyle \lim_{{{x}\rightarrow-{3}}}{f{{\left({x}\right)}}}=

limx5f(x)=\displaystyle \lim_{{{x}\rightarrow-{5}^{{-}}}}{f{{\left({x}\right)}}}=

limx5+f(x)=\displaystyle \lim_{{{x}\rightarrow-{5}^{+}}}{f{{\left({x}\right)}}}=

limx5f(x)=\displaystyle \lim_{{{x}\rightarrow-{5}}}{f{{\left({x}\right)}}}=

f(3)=\displaystyle {f{{\left(-{3}\right)}}}=

f(5)=\displaystyle {f{{\left(-{5}\right)}}}=