12345678910-1-2-3-4-5-6-7-8-9-1012345678910-1-2-3-4-5-6-7-8-9-10

For the graph f(x)\displaystyle {f{{\left({x}\right)}}} above, find:

Find:

limx1f(x)=\displaystyle \lim_{{{x}\rightarrow{1}^{{-}}}}{f{{\left({x}\right)}}}=

limx1+f(x)=\displaystyle \lim_{{{x}\rightarrow{1}^{+}}}{f{{\left({x}\right)}}}=

limx1f(x)=\displaystyle \lim_{{{x}\rightarrow{1}}}{f{{\left({x}\right)}}}=

limx0f(x)=\displaystyle \lim_{{{x}\rightarrow{0}^{{-}}}}{f{{\left({x}\right)}}}=

limx0+f(x)=\displaystyle \lim_{{{x}\rightarrow{0}^{+}}}{f{{\left({x}\right)}}}=

limx0f(x)=\displaystyle \lim_{{{x}\rightarrow{0}}}{f{{\left({x}\right)}}}=

f(1)=\displaystyle {f{{\left({1}\right)}}}=

f(0)=\displaystyle {f{{\left({0}\right)}}}=