Solve the Cauchy-Euler equation
t
2
y
′
′
−
11
t
y
′
+
27
y
=
0
\displaystyle {t}^{{2}}{y}{''}-{11}{t}{y}'+{27}{y}={0}
t
2
y
′′
−
11
t
y
′
+
27
y
=
0
with initial conditions
y
(
1
)
=
−
1
,
y
′
(
1
)
=
12
\displaystyle {y}{\left({1}\right)}=-{1},{y}'{\left({1}\right)}={12}
y
(
1
)
=
−
1
,
y
′
(
1
)
=
12
.
y
(
t
)
=
\displaystyle {y}{\left({t}\right)}=
y
(
t
)
=
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question