Select the correct statement of The Fundamental Theorem of Calculus:
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
\displaystyle {\int_{{a}}^{{b}}}{f{{\left({x}\right)}}}\ {\left.{d}{x}\right.}={F}{\left({b}\right)}-{F}{\left({a}\right)}
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
, where
F
\displaystyle {F}
F
is any antiderivative of
f
\displaystyle {f}
f
.
∫
a
b
F
(
x
)
d
x
=
F
(
a
)
−
F
(
b
)
\displaystyle {\int_{{a}}^{{b}}}{F}{\left({x}\right)}\ {\left.{d}{x}\right.}={F}{\left({a}\right)}-{F}{\left({b}\right)}
∫
a
b
F
(
x
)
d
x
=
F
(
a
)
−
F
(
b
)
∫
a
b
F
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
\displaystyle {\int_{{a}}^{{b}}}{F}{\left({x}\right)}\ {\left.{d}{x}\right.}={F}{\left({b}\right)}-{F}{\left({a}\right)}
∫
a
b
F
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
∫
a
b
f
(
x
)
d
x
=
F
(
a
)
−
F
(
b
)
\displaystyle {\int_{{a}}^{{b}}}{f{{\left({x}\right)}}}\ {\left.{d}{x}\right.}={F}{\left({a}\right)}-{F}{\left({b}\right)}
∫
a
b
f
(
x
)
d
x
=
F
(
a
)
−
F
(
b
)
, where
F
\displaystyle {F}
F
is any antiderivative of
f
\displaystyle {f}
f
.
Submit
Try a similar question
License
[more..]