Set up a double integral in polar coordinates to compute Ry dA\displaystyle \int\int_{{R}}{y}\ {d}{A}, where R is the region bounded by the circle r=25sin(θ)\displaystyle {r}={25}{\sin{{\left(\theta\right)}}}. Type theta to enter θ\displaystyle \theta.




\displaystyle \int
\displaystyle \int
r dr dθ\displaystyle \quad{r}\ {d}{r}\ {d}\theta




Complete the integration. Enter an exact answer involving π\displaystyle \pi. Type pi to enter π\displaystyle \pi.

 
Hint: Make use of the power reduction formula: sin2(x)=12(1cos(2x))\displaystyle {{\sin}^{{2}}{\left({x}\right)}}=\frac{{1}}{{2}}{\left({1}-{\cos{{\left({2}{x}\right)}}}\right)}