The Maclaurin series for f(x)=sin(x)\displaystyle {f{{\left({x}\right)}}}={\sin{{\left({x}\right)}}} is
n=0(1)n(x)2n+1(2n+1)!=xx33!+x55!x77!+\displaystyle {\sum_{{{n}={0}}}^{\infty}}\frac{{{\left(-{1}\right)}^{{n}}{\left({x}\right)}^{{{2}{n}+{1}}}}}{{{\left({2}{n}+{1}\right)}!}}={x}-\frac{{x}^{{3}}}{{{3}!}}+\frac{{x}^{{5}}}{{{5}!}}-\frac{{x}^{{7}}}{{{7}!}}+\ldots

By transforming the series for sin(x)\displaystyle {\sin{{\left({x}\right)}}}, find the Maclaurin series f(x)=x2sin(7x)\displaystyle {f{{\left({x}\right)}}}={x}^{{{2}}}{\sin{{\left({7}{x}\right)}}}.
(Your terms should be entered from smallest degree to highest degree.)



T(x)=\displaystyle {T}{\left({x}\right)}= + + + + + ...
         

It would not be easy to write all terms of this series compactly, so we might write this series as:

 T(x)=n=0\displaystyle {T}{\left({x}\right)}={\sum_{{{n}={0}}}^{{\infty}}}