Does the series
∑
n
=
1
∞
n
2
n
+
5
\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\ \frac{\sqrt{{{n}}}}{{{2}{n}+{5}}}
n
=
1
∑
∞
2
n
+
5
n
converge absolutely, converge conditionally or diverge?
converges absolutely
diverges
converges conditionally
Does the series
∑
n
=
1
∞
(
−
1
)
n
n
2
n
+
5
\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\ \frac{{{\left(-{1}\right)}^{{n}}\sqrt{{{n}}}}}{{{2}{n}+{5}}}
n
=
1
∑
∞
2
n
+
5
(
−
1
)
n
n
converge absolutely, converge conditionally or diverge?
diverges
converges absolutely
converges conditionally
Submit
Try a similar question
License
[more..]