Does the series n=1 n2n+5\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\ \frac{\sqrt{{{n}}}}{{{2}{n}+{5}}} converge absolutely, converge conditionally or diverge?


Does the series n=1 (1)nn2n+5\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\ \frac{{{\left(-{1}\right)}^{{n}}\sqrt{{{n}}}}}{{{2}{n}+{5}}} converge absolutely, converge conditionally or diverge?