Given the series
∑
n
=
1
∞
(
−
1
)
n
+
1
n
p
\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\ \frac{{\left(-{1}\right)}^{{{n}+{1}}}}{{n}^{{p}}}
n
=
1
∑
∞
n
p
(
−
1
)
n
+
1
, if
0
<
p
≤
1
\displaystyle {0}<{p}\le{1}
0
<
p
≤
1
the alternating series ____________________.
diverges
converges absolutely
converges conditionally
Submit
Try a similar question
License
[more..]