Consider this data set of (n=117\displaystyle {n}={117}) birth weights in grams that has been sorted.

163019462049208421112216221923382389
246825062539254725482570259225992636
266426742690269327542766278528402843
284428822891290329092914292929572985
300130053022302830323062307330793082
310531063111311831563174318231943224
322732343242325032523274328033133336
335133513356340934123418342134253437
345834593465347034883494351335163520
353735733603365336603671367137093714
372537353739374937613761378038503853
387338883920395539633978399540714123
413741504167419942404260457946884783


[Graphs generated by this script: setBorder(54,40,20,15); initPicture(1050,5000,0,42);axes(9566,10,1,null,10); fill="blue"; stroke="black"; textabs([165,0],"weight (g)","above");line([1500,-0.84],[1500,0.84]); text([1500,0],"1500","below");line([2000,-0.84],[2000,0.84]); text([2000,0],"2000","below");line([2500,-0.84],[2500,0.84]); text([2500,0],"2500","below");line([3000,-0.84],[3000,0.84]); text([3000,0],"3000","below");line([3500,-0.84],[3500,0.84]); text([3500,0],"3500","below");line([4000,-0.84],[4000,0.84]); text([4000,0],"4000","below");line([4500,-0.84],[4500,0.84]); text([4500,0],"4500","below");line([5000,-0.84],[5000,0.84]); text([5000,0],"5000","below");textabs([0,115],"Frequency","right",90);rect([1500,0],[2000,2]);rect([2000,0],[2500,8]);rect([2500,0],[3000,26]);rect([3000,0],[3500,42]);rect([3500,0],[4000,28]);rect([4000,0],[4500,8]);rect([4500,0],[5000,3]);]

Use a spreadsheet to find the 20-Percentile:
P20 =