Let f(x)={5x1ifx<22x+6ifx2\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {5}{x}-{1}&\text{if}&{x}<{2}\\{\frac{{{2}}}{{{x}+{6}}}}&\text{if}&{x}\geq{2}\end{array}\right.}
Show that f(x)\displaystyle {f{{\left({x}\right)}}} has a jump discontinuity at x=2\displaystyle {x}={2} by calculating the limits from the left and right at x=2\displaystyle {x}={2}.

limx2f(x)=\displaystyle \lim_{{{x}\to{2}^{{-}}}}{f{{\left({x}\right)}}}=  

limx2+f(x)=\displaystyle \lim_{{{x}\to{2}^{+}}}{f{{\left({x}\right)}}}=