Let f(x)={cx+1ifx<5difx=5312xifx>5\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {c}{x}+{1}&\text{if}&{x}<{5}\\{d}&\text{if}&{x}={5}\\{31}-{2}{x}&\text{if}&{x}>{5}\end{array}\right.}

Find values of c,d\displaystyle {c},{d} that make f(x)\displaystyle {f{{\left({x}\right)}}} continuous at x=5\displaystyle {x}={5}.

c=\displaystyle {c}= and\displaystyle {\quad\text{and}\quad}d =

limx5f(x)=\displaystyle \lim_{{{x}\to{5}}}{f{{\left({x}\right)}}}=