Let x=4t2,y=2t3+18t2\displaystyle {x}={4}{t}^{{2}},{y}=-{2}{t}^{{3}}+{18}{t}^{{2}}.

Determine dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{\left.{d}{x}\right.}} as a function of t\displaystyle {t}, then find the slope of the parametric curve at t=6\displaystyle {t}={6}.

    dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{\left.{d}{x}\right.}} =    

    dydx(6)=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{\left.{d}{x}\right.}}{\left({6}\right)}=  

Determine d2ydx2\displaystyle \frac{{{d}^{{2}}{y}}}{{\left.{d}{x}\right.}^{{2}}} as a function of t\displaystyle {t}, then find the concavity of the parametric curve at t=6\displaystyle {t}={6}.

    d2ydx2\displaystyle \frac{{{d}^{{2}}{y}}}{{\left.{d}{x}\right.}^{{2}}} =    

    d2ydx2(6)=\displaystyle \frac{{{d}^{{2}}{y}}}{{\left.{d}{x}\right.}^{{2}}}{\left({6}\right)}=  

At t=6\displaystyle {t}={6}, the parametric curve has