Find the values of m\displaystyle {m} and b\displaystyle {b} that make f\displaystyle {f} continuous everywhere:

 f(x)={3+2xx2x+1ifx<1mx+bif1x2322x+19ifx>2\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{cc} \frac{{{3}+{2}{x}-{x}^{{2}}}}{{{x}+{1}}}&{\quad\text{if}\quad}{x}<-{1}\\{m}{x}+{b}&{\quad\text{if}\quad}-{1}\le{x}\le{2}\\{3}\cdot{2}^{{{2}-{x}}}+{19}&{\quad\text{if}\quad}{x}>{2}\end{array}\right.} 



When showing your work, be sure to include all limit calculations and a sketch of the graph.

m=\displaystyle {m}=  
b=\displaystyle {b}=