For the integral 1230x4sin(6x5+2)dx\displaystyle {\int_{{1}}^{{2}}}{30}{x}^{{4}}{\sin{{\left({6}{x}^{{5}}+{2}\right)}}}{\left.{d}{x}\right.}, we can choose an appropriate function u\displaystyle {u} so the integral can be rewritten as absin(u)du\displaystyle {\int_{{a}}^{{b}}}{\sin{{\left({u}\right)}}}{d}{u}.

What are the new limits on this integral?

a=\displaystyle {a}=  

b=\displaystyle {b}=  

Using these values, determine the value of the integral.

Answer: