Find an antiderivative F(x)\displaystyle {F}{\left({x}\right)} of the function f(x)=3x+2\displaystyle {f{{\left({x}\right)}}}=-{3}\sqrt{{{x}}}+{2} such that F(0)=11\displaystyle {F}{\left({0}\right)}=-{11}.

F(x)=\displaystyle {F}{\left({x}\right)}=  

Now, find a different antiderivative G(x)\displaystyle {G}{\left({x}\right)} of the function f(x)=3x+2\displaystyle {f{{\left({x}\right)}}}=-{3}\sqrt{{{x}}}+{2} such that G(0)=8\displaystyle {G}{\left({0}\right)}=-{8}.

G(x)=\displaystyle {G}{\left({x}\right)}=