Find an antiderivative F(x)\displaystyle {F}{\left({x}\right)} of the function f(x)=3sin(x)\displaystyle {f{{\left({x}\right)}}}=-{3}{\sin{{\left({x}\right)}}} such that F(π2)=14\displaystyle {F}{\left(\frac{\pi}{{2}}\right)}={14}.

F(x)=\displaystyle {F}{\left({x}\right)}=  

Now, find a different antiderivative G(x)\displaystyle {G}{\left({x}\right)} of the function f(x)=3sin(x)\displaystyle {f{{\left({x}\right)}}}=-{3}{\sin{{\left({x}\right)}}} such that G(π2)=13\displaystyle {G}{\left(\frac{\pi}{{2}}\right)}={13}.

G(x)=\displaystyle {G}{\left({x}\right)}=