Find an antiderivative F(x)\displaystyle {F}{\left({x}\right)} of the function f(x)=5x26x+3\displaystyle {f{{\left({x}\right)}}}={5}{x}^{{2}}-{6}{x}+{3} such that F(1)=7\displaystyle {F}{\left({1}\right)}={7}.

F(x)=\displaystyle {F}{\left({x}\right)}=  

(Hint: Write the constant term on the end of the antiderivative as C\displaystyle {C}, and then set F(1)=7\displaystyle {F}{\left({1}\right)}={7} and solve for C\displaystyle {C}.)

Now, find a different antiderivative G(x)\displaystyle {G}{\left({x}\right)} of the function f(x)=5x26x+3\displaystyle {f{{\left({x}\right)}}}={5}{x}^{{2}}-{6}{x}+{3} such that G(1)=10\displaystyle {G}{\left({1}\right)}={10}.

G(x)=\displaystyle {G}{\left({x}\right)}=