Math the expression to its corresponding formula.
Expression
-
a
b
c
d
e
f
g
∣
a
⃗
×
b
⃗
∣
\displaystyle {\left|\vec{{a}}\times\vec{{b}}\right|}
∣
∣
a
×
b
∣
∣
-
a
b
c
d
e
f
g
The arc length function
-
a
b
c
d
e
f
g
The unit normal vector
-
a
b
c
d
e
f
g
The length of a curve
-
a
b
c
d
e
f
g
The unit tangent vector
-
a
b
c
d
e
f
g
a
⃗
.
b
⃗
\displaystyle \vec{{a}}.\vec{{b}}
a
.
b
-
a
b
c
d
e
f
g
The curvature
Formula
∫
a
t
∣
r
′
(
u
)
∣
d
u
\displaystyle {\int_{{a}}^{{t}}}{\left|{r}'{\left({u}\right)}\right|}{d}{u}
∫
a
t
∣
r
′
(
u
)
∣
d
u
r
⃗
′
(
t
)
∣
r
⃗
′
(
t
)
∣
\displaystyle \frac{{\vec{{r}}'{\left({t}\right)}}}{{\left|\vec{{r}}'{\left({t}\right)}\right|}}
∣
r
′
(
t
)
∣
r
′
(
t
)
∣
a
⃗
∣
∣
b
⃗
∣
sin
(
θ
)
\displaystyle {\left|\vec{{a}}\right|}{\left|\vec{{b}}\right|}{\sin{{\left(\theta\right)}}}
∣
a
∣
∣
∣
b
∣
∣
sin
(
θ
)
T
⃗
′
(
t
)
∣
T
⃗
′
(
t
)
∣
\displaystyle \frac{{\vec{{T}}'{\left({t}\right)}}}{{\left|\vec{{T}}'{\left({t}\right)}\right|}}
∣
∣
T
′
(
t
)
∣
∣
T
′
(
t
)
∣
a
⃗
∣
∣
b
⃗
∣
cos
(
θ
)
\displaystyle {\left|\vec{{a}}\right|}{\left|\vec{{b}}\right|}{\cos{{\left(\theta\right)}}}
∣
a
∣
∣
∣
b
∣
∣
cos
(
θ
)
∫
a
b
∣
r
′
(
t
)
∣
d
t
\displaystyle {\int_{{a}}^{{b}}}{\left|{r}'{\left({t}\right)}\right|}{\left.{d}{t}\right.}
∫
a
b
∣
r
′
(
t
)
∣
d
t
∣
r
⃗
(
t
)
×
r
⃗
′
(
t
)
∣
∣
r
⃗
′
(
t
)
∣
3
\displaystyle \frac{{{\left|\vec{{r}}{\left({t}\right)}\times\vec{{r}}'{\left({t}\right)}\right|}}}{{\left|\vec{{r}}'{\left({t}\right)}\right|}^{{3}}}
∣
r
′
(
t
)
∣
3
∣
r
(
t
)
×
r
′
(
t
)
∣
Submit
Try a similar question
License
[more..]