Find the function y=y(x)\displaystyle {y}={y}{\left({x}\right)}y=y(x) (for x>0\displaystyle {x}\gt{0}x>0) which satisfies the separable differential equation dydx=5xy2 ,x>0\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=\frac{{{5}}}{{{x}{y}^{{2}}}}\ \ \ ,{x}\gt{0}dxdy=xy25 ,x>0 with the initial condition y(1)=6\displaystyle {y}{\left({1}\right)}={6}y(1)=6. y=\displaystyle {y}=y= Preview Question 6
Submit Try a similar question