Evaluate 1arcsin(6x)136x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.} for 0<x<16\displaystyle {0}<{x}<\frac{{1}}{{6}}.


First make the substitution u=\displaystyle {u}=  

Then 1arcsin(6x)136x2dx=\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.}=\int   du

Now integrate with respect to u\displaystyle {u} to get + C   (in terms of u\displaystyle {u}  

So 1arcsin(6x)136x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.} = + C