Evaluate ∫1arcsin(6x)1−36x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.}∫arcsin(6x)1−36x21dx for 0<x<16\displaystyle {0}<{x}<\frac{{1}}{{6}}0<x<61.
First make the substitution u=\displaystyle {u}=u=Preview Question 6 Part 1 of 4
Then ∫1arcsin(6x)1−36x2dx=∫\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.}=\int∫arcsin(6x)1−36x21dx=∫ Preview Question 6 Part 2 of 4 du
Now integrate with respect to u\displaystyle {u}u to get + C (in terms of u\displaystyle {u}u) Preview Question 6 Part 3 of 4
So ∫1arcsin(6x)1−36x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({6}{x}\right)}}}\sqrt{{{1}-{36}{x}^{{2}}}}}}{\left.{d}{x}\right.}∫arcsin(6x)1−36x21dx = + C Preview Question 6 Part 4 of 4
Submit Try a similar question