Evaluate the integral dxx2+4x+10\displaystyle \int\frac{{{\left.{d}{x}\right.}}}{{{x}^{{2}}+{4}{x}+{10}}}.

a. For this integral, the appropriate substitution that will yield an inverse trigonometric antiderivative is u=\displaystyle {u}= .

b. Rewriting the integral in terms of u\displaystyle {u} gives \displaystyle \int du\displaystyle {d}{u}     

c. dxx2+4x+10=\displaystyle \int\frac{{{\left.{d}{x}\right.}}}{{{x}^{{2}}+{4}{x}+{10}}}= +C\displaystyle +{C}          Write your final answer in terms of x\displaystyle {x}.