For a normal variable X∼N(μ=35.9,σ=1.3)\displaystyle {X}\sim{N}{\left(\mu={35.9},\sigma={1.3}\right)}X∼N(μ=35.9,σ=1.3), find the probability P(32.95<X<33.65)\displaystyle {P}{\left({32.95}<{X}<{33.65}\right)}P(32.95<X<33.65) :
P(32.95<X<33.65)=\displaystyle {P}{\left({32.95}<{X}<{33.65}\right)}=P(32.95<X<33.65)= (Round the answer to 4 decimal places)
Submit Try a similar question