For a normal variable XN(μ=35.9,σ=1.3)\displaystyle {X}\sim{N}{\left(\mu={35.9},\sigma={1.3}\right)}, find the probability P(32.95<X<33.65)\displaystyle {P}{\left({32.95}<{X}<{33.65}\right)} :

 P(32.95<X<33.65)=\displaystyle {P}{\left({32.95}<{X}<{33.65}\right)}=  (Round the answer to 4 decimal places)