For a uniform random variable U∼U(19,29)\displaystyle {U}\sim{U}{\left({19},{29}\right)}U∼U(19,29), find the probability P(U>28)\displaystyle {P}{\left({U}>{28}\right)}P(U>28):
P(U>28)=\displaystyle {P}{\left({U}>{28}\right)}=P(U>28)= (Round the answer to 4 decimal places)
Submit Try a similar question