Let YB(n=2,p=0.2)\displaystyle {Y}\sim{B}{\left({n}={2},{p}={0.2}\right)} with the following probability distribution table:

k\displaystyle {k}   P(Y=k)=Cknpk(1p)nk\displaystyle {P}{\left({Y}={k}\right)}={{C}_{{k}}^{{n}}}{p}^{{k}}{\left({1}-{p}\right)}^{{{n}-{k}}} 
0  P(Y=0)=\displaystyle {P}{\left({Y}={0}\right)}= 0.64
1  P(Y=1)=\displaystyle {P}{\left({Y}={1}\right)}= 0.32
2  P(Y=2)=\displaystyle {P}{\left({Y}={2}\right)}= 0.04

Use the probability distribution table to find the following:

  1.  P(Y<2)=\displaystyle {P}{\left({Y}\lt-{2}\right)}=
  2.  P(Y3)=\displaystyle {P}{\left({Y}\le{3}\right)}=
  3.  P(Y1)=\displaystyle {P}{\left({Y}\le{1}\right)}=