Let YB(n=2,p=0.7)\displaystyle {Y}\sim{B}{\left({n}={2},{p}={0.7}\right)} with the following probability distribution table:

k\displaystyle {k}   P(Y=k)=Cknpk(1p)nk\displaystyle {P}{\left({Y}={k}\right)}={{C}_{{k}}^{{n}}}{p}^{{k}}{\left({1}-{p}\right)}^{{{n}-{k}}} 
0  P(Y=0)=\displaystyle {P}{\left({Y}={0}\right)}= 0.09
1  P(Y=1)=\displaystyle {P}{\left({Y}={1}\right)}= 0.42
2  P(Y=2)=\displaystyle {P}{\left({Y}={2}\right)}= 0.49

Find the mean and standard deviation of X\displaystyle {X}:

  1.  E[X]=\displaystyle {E}{\left[{X}\right]}=
  2.  SD[X]=\displaystyle {S}{D}{\left[{X}\right]}=